Treffer: Immersion of self-intersecting solids and surfaces.
Weitere Informationen
Self-intersecting, or nearly self-intersecting, meshes are commonly found in 2D and 3D computer graphics practice. Self-intersections occur, for example, in the process of artist manual work, as a by-product of procedural methods for mesh generation, or due to modeling errors introduced by scanning equipment. If the space bounded by such inputs is meshed naively, the resulting mesh joins ("glues") self-overlapping parts, precluding efficient further modeling and animation of the underlying geometry. Similarly, near self-intersections force the simulation algorithm to employ an unnecessarily detailed mesh to separate the nearly self-intersecting regions. Our work addresses both of these challenges, by giving an algorithm to generate an "un-glued" simulation mesh, of arbitrary user-chosen resolution, that properly accounts for self-intersections and near self-intersections. In order to achieve this result, we study the mathematical concept of immersion, and give a deterministic and constructive algorithm to determine if the input self-intersecting triangle mesh is the boundary of an immersion. For near self-intersections, we give a robust algorithm to properly duplicate mesh elements and correctly embed the underlying geometry into the mesh element copies. Both the self-intersections and near self-intersections are combined into one algorithm that permits successful meshing at arbitrary resolution. Applications of our work include volumetric shape editing, physically based simulation and animation, and volumetric weight and geodesic distance computation on self-intersecting inputs. [ABSTRACT FROM AUTHOR]
Copyright of ACM Transactions on Graphics is the property of Association for Computing Machinery and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)