Treffer: ginSODA: massive parallel integration of stiff ODE systems on GPUs.
Weitere Informationen
Ordinary differential equations (ODEs) are a widespread formalism for the mathematical modeling of natural and engineering systems, whose analysis is generally performed by means of numerical integration methods. However, real-world models are often characterized by stiffness, a circumstance that can lead to prohibitive execution times. In such cases, the practical viability of many computational tools—e.g., sensitivity analysis—is hampered by the necessity to carry out a large number of simulations. In this work, we present ginSODA, a general-purpose black-box numerical integrator that distributes the calculations on graphics processing units, and allows to run massive numbers of numerical integrations of ODE systems characterized by stiffness. By leveraging symbolic differentiation, meta-programming techniques, and source code hashing, ginSODA automatically builds highly optimized binaries for the CUDA architecture, preventing code re-compilation and allowing to speed up the computation with respect to the sequential execution. ginSODA also provides a simplified Python interface, which allows to define a system of ODEs and the test to be performed in a few lines of code. According to our results, ginSODA provides up to a 25 × speedup with respect to the sequential execution. [ABSTRACT FROM AUTHOR]
Copyright of Journal of Supercomputing is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)