Treffer: EEG signal classification using LSTM and improved neural network algorithms.
Weitere Informationen
Neural network (NN) finds role in variety of applications due to combined effect of feature extraction and classification availability in deep learning algorithms. In this paper, we have chosen SVM, logistic regression machine learning algorithms and NN for EEG signal classification. Two-layer LSTM and four-layer improved NN deep learning algorithms are proposed to improve the performance in EEG classification. Novelty lies in one-dimensional gradient descent activation functions with radial basis operations used in the initial layers of improved NN which help in achieving better performance. Statistical features namely mean, standard deviation, kurtosis and skewness are extracted for input EEG collected from Bonn database and then applied for various classification techniques. Accuracy, precision, recall and F1 score are the performance metrics used for analyzing the algorithms. Improved NN and LSTM give better performance compared to all other architectures. The simulations are carried out with variety of activation functions, optimizers and loss models to analyze the performance using Python in keras. [ABSTRACT FROM AUTHOR]
Copyright of Soft Computing - A Fusion of Foundations, Methodologies & Applications is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)