Treffer: Empirical Performance Analysis of Collective Communication for Distributed Deep Learning in a Many-Core CPU Environment.

Title:
Empirical Performance Analysis of Collective Communication for Distributed Deep Learning in a Many-Core CPU Environment.
Source:
Applied Sciences (2076-3417); Oct2020, Vol. 10 Issue 19, p6717, 24p
Company/Entity:
Database:
Complementary Index

Weitere Informationen

To accommodate lots of training data and complex training models, "distributed" deep learning training has become employed more and more frequently. However, communication bottlenecks between distributed systems lead to poor performance of distributed deep learning training. In this study, we proposed a new collective communication method in a Python environment by utilizing Multi-Channel Dynamic Random Access Memory (MCDRAM) in Intel Xeon Phi Knights Landing processors. Major deep learning software platforms, such as TensorFlow and PyTorch, offer Python as a main development language, so we developed an efficient communication library by adapting Memkind library, which is a C-based library to utilize high-performance memory MCDRAM. For performance evaluation, we tested the popular collective communication methods in distributed deep learning, such as Broadcast, Gather, and AllReduce. We conducted experiments to analyze the effect of high-performance memory and processor location on communication performance. In addition, we analyze performance in a Docker environment for further relevance given the recent major trend of Cloud computing. By extensive experiments in our testbed, we confirmed that the communication in our proposed method showed performance improvement by up to 487%. [ABSTRACT FROM AUTHOR]

Copyright of Applied Sciences (2076-3417) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)