Treffer: Craniofacial Reconstruction Method Based on Region Fusion Strategy.
Weitere Informationen
Craniofacial reconstruction is to estimate a person's face model from the skull. It can be applied in many fields such as forensic medicine, archaeology, and face animation. Craniofacial reconstruction is based on the relationship between the skull and the face to reconstruct the facial appearance from the skull. However, the craniofacial structure is very complex and the relationship is not the same in different craniofacial regions. To better represent the shape changes of the skull and face and make better use of the correlation between different local regions, a new craniofacial reconstruction method based on region fusion strategy is proposed in this paper. This method has the flexibility of finding the nonlinear relationship between skull and face variables and is easy to solve. Firstly, the skull and face are divided into five corresponding local regions; secondly, the five regions of skull and face are mapped to low-dimensional latent space using Gaussian process latent variable model (GP-LVM), and the nonlinear features between skull and face are extracted; then, least square support vector regression (LSSVR) model is trained in latent space to establish the mapping relationship between skull region and face region; finally, perform regional fusion to achieve overall reconstruction. For the unknown skull, first divide the region, then project it into the latent space of the skull region, then use the trained LSSVR model to reconstruct the face of the corresponding region, and finally perform regional fusion to realize the face reconstruction of the unknown skull. The experimental results show that the method is effective. Compared with other regression methods, our method is optimal. In addition, we add attributes such as age and body mass index (BMI) to the mappings to achieve face reconstruction with different attributes. [ABSTRACT FROM AUTHOR]
Copyright of BioMed Research International is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)