Treffer: Comparación multiplaforma de técnicas basadas en visión artificial para detección de personas en espacios abiertos.
Weitere Informationen
Objective: tObjective: This article presents a cross-platform comparison between Python 3.7 background subtraction and cascade object detection algorithms using a Windows 10 personal computer and Debian GNU/LINUX running on a Raspberry Pi 3B+ board. Methodology: This study was divided in the following three stages: video image enhancements, implementation of the people detection techniques, and assessment of detection algorithms based on response times, memory space requirements, and successful detection rates. Results: The background subtraction technique has an accuracy of 89.7%, while this value for the cascade detector technique corresponds to 93.65%. Likewise, the background subtraction technique presents better performance regarding response time, obtaining 0.5934 seconds for Windows and 2.6338 seconds for Linux. Conclusions: Both the background subtraction and the cascade object detection technique responded 5 times faster on the personal computer than on the Raspberry Pi 3B+ board, whereas the memory space required by the background subtraction technique is 26.28% and 55% higher than the space required by the cascade object detection technique for the personal computer and the Raspberry Pi 3B+ board, respectively. [ABSTRACT FROM AUTHOR]
Objetivo: Realizar una comparación multiplataforma entre los algoritmos de las técnicas de sustracción de fondo y de detectores en cascada por medio de una computadora personal y una placa Raspberry Pi 3B+ con Windows 10 y Debian GNU/LINUX respectivamente, en lenguaje de programación Python 3.7. Metodología: Se proponen tres etapas correspondientes a las mejoras en la imagen de video, la implementación de las técnicas de detección de personas y la evaluación del rendimiento de los algoritmos de dichas técnicas respecto al tiempo de respuesta, espacio de memoria requerido y aciertos en las detecciones. Resultados: La técnica de sustracción de fondo presenta una exactitud de 89.7% mientras que dicho valor para la técnica de detectores en cascada corresponde al 93.65%. Así mismo, la técnica de sustracción de fondo presenta mejor comportamiento respecto al tiempo de respuesta obteniendo 0.5934 segundos para Windows y 2.6338 segundos para Linux. Conclusiones: Tanto la técnica de sustracción de fondo como la técnica de detectores en cascada responden 5 veces más rápido en la computadora personal que en la placa Raspberry Pi 3B+, por su parte, el espacio de memoria requerido por la técnica de sustracción de fondo es 26.28% y 55% superior al espacio requerido por la técnica de detectores en cascada en el computador personal y en la placa Raspberry Pi 3B+ respectivamente. [ABSTRACT FROM AUTHOR]
Copyright of Investigación e Innovación en Ingenierías is the property of Universidad Simon Bolivar and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)