Treffer: Recent developments in histogram libraries.

Title:
Recent developments in histogram libraries.
Source:
EPJ Web of Conferences; 11/16/2020, Vol. 245, p1-9, 9p
Database:
Complementary Index

Weitere Informationen

Boost.Histogram, a header-only C++14 library that provides multidimensional histograms and profiles, became available in Boost 1.70. It is extensible, fast, and uses modern C++ features. Using template metaprogramming, the most efficient code path for any given configuration is automatically selected. The library includes key features designed for the particle physics community, such as optional under- and overflow bins, weighted increments, reductions, growing axes, thread-safe filling, and memory-efficient counters with high-dynamic range. Python bindings for Boost.Histogram are being developed in the Scikit-HEP project to provide a fast, easy-to-install package as a backend for other Python libraries and for advanced users to manipulate histograms. Versatile and efficient histogram filling, effective manipulation, multithreading support, and other features make this a powerful tool. This library has also driven package distribution efforts in Scikit-HEP, allowing binary packages hosted on PyPI to be available for a very wide variety of platforms. Two other libraries fill out the remainder of the Scikit-HEP Python histogramming effort. Aghast is a library designed to provide conversions between different forms of histograms, enabling interaction between histogram libraries, often without an extra copy in memory. This enables a user to make a histogram in one library and then save it in another form, such as saving a Boost.Histogram in ROOT. And Hist is a library providing friendly, analyst-targeted syntax and shortcuts for quick manipulations and fast plotting using these two libraries. [ABSTRACT FROM AUTHOR]

Copyright of EPJ Web of Conferences is the property of EDP Sciences and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)