Treffer: autodE: Automated Calculation of Reaction Energy Profiles— Application to Organic and Organometallic Reactions.

Title:
autodE: Automated Calculation of Reaction Energy Profiles— Application to Organic and Organometallic Reactions.
Source:
Angewandte Chemie; 2/19/2021, Vol. 133 Issue 8, p4312-4320, 9p
Database:
Complementary Index

Weitere Informationen

Calculating reaction energy profiles to aid in mechanistic elucidation has long been the domain of the expert computational chemist. Here, we introduce autodE (https://github.com/duartegroup/autodE), an open‐source Python package capable of locating transition states (TSs) and minima and delivering a full reaction energy profile from 1D or 2D chemical representations. autodE is broadly applicable to study organic and organometallic reaction classes, including addition, substitution, elimination, migratory insertion, oxidative addition, and reductive elimination; it accounts for conformational sampling of both minima and TSs and is compatible with many electronic structure packages. The general applicability of autodE is demonstrated in complex multi‐step reactions, including cobalt‐ and rhodium‐catalyzed hydroformylation and an Ireland–Claisen rearrangement. [ABSTRACT FROM AUTHOR]

Copyright of Angewandte Chemie is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)