Treffer: YeastNet: Deep-Learning-Enabled Accurate Segmentation of Budding Yeast Cells in Bright-Field Microscopy.

Title:
YeastNet: Deep-Learning-Enabled Accurate Segmentation of Budding Yeast Cells in Bright-Field Microscopy.
Source:
Applied Sciences (2076-3417); 3/15/2021, Vol. 11 Issue 6, p2692, 16p
Database:
Complementary Index

Weitere Informationen

Accurate and efficient segmentation of live-cell images is critical in maximizing data extraction and knowledge generation from high-throughput biology experiments. Despite recent development of deep-learning tools for biomedical imaging applications, great demand for automated segmentation tools for high-resolution live-cell microscopy images remains in order to accelerate the analysis. YeastNet dramatically improves the performance of the non-trainable classic algorithm, and performs considerably better than the current state-of-the-art yeast-cell segmentation tools. We have designed and trained a U-Net convolutional network (named YeastNet) to conduct semantic segmentation on bright-field microscopy images and generate segmentation masks for cell labeling and tracking. YeastNet enables accurate automatic segmentation and tracking of yeast cells in biomedical applications. YeastNet is freely provided with model weights as a Python package on GitHub. [ABSTRACT FROM AUTHOR]

Copyright of Applied Sciences (2076-3417) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)