Treffer: Intelligent Mirai Malware Detection for IoT Nodes.

Title:
Intelligent Mirai Malware Detection for IoT Nodes.
Source:
Electronics (2079-9292); Jun2021, Vol. 10 Issue 11, p1241, 1p
Database:
Complementary Index

Weitere Informationen

The advancement in recent IoT devices has led to catastrophic attacks on the devices resulting in breaches in user privacy and exhausting resources of various organizations, so that users and organizations expend increased time and money. One such harmful malware is Mirai, which has created worldwide recognition by impacting the digital world. There are several ways to detect Mirai, but the Machine Learning approach has proved to be accurate and reliable in detecting malware. In this research, a novel-based approach of detecting Mirai using Machine Learning Algorithm is proposed and implemented in Matlab and Python. To evaluate the proposed approaches, Mirai and Benign datasets are considered and training is performed on the dataset comprised of a Training set, Cross-Validation set and Test set using Artificial Neural Network (ANN) consisting of neurons in the hidden layer, which provides consistent accuracy, precision, recall and F-1 score. In this research, an accurate number of hidden layers and neurons are chosen to avoid the problem of Overfitting. This research provides a comparative analysis between ANN and Random Forest models of the dataset formed by merging Mirai and benign datasets of the Mirai malware detection pertaining to seven IoT devices. The dataset used in this research is "N-BaIoT" dataset, which represents data in the features infected by Mirai Malware. The results are found to be accurate and reliable as the best performance was achieved with an accuracy of 92.8% and False Negative rate of 0.3% and F-1 score of 0.99. The expected outcomes of this project, include major findings towards cost-effective Learning solutions in detecting Mirai Malware strains. [ABSTRACT FROM AUTHOR]

Copyright of Electronics (2079-9292) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)