Treffer: Machine-learning accelerated geometry optimization in molecular simulation.

Title:
Machine-learning accelerated geometry optimization in molecular simulation.
Source:
Journal of Chemical Physics; 6/21/2021, Vol. 154 Issue 23, p1-9, 9p
Database:
Complementary Index

Weitere Informationen

Geometry optimization is an important part of both computational materials and surface science because it is the path to finding ground state atomic structures and reaction pathways. These properties are used in the estimation of thermodynamic and kinetic properties of molecular and crystal structures. This process is slow at the quantum level of theory because it involves an iterative calculation of forces using quantum chemical codes such as density functional theory (DFT), which are computationally expensive and which limit the speed of the optimization algorithms. It would be highly advantageous to accelerate this process because then one could do either the same amount of work in less time or more work in the same time. In this work, we provide a neural network (NN) ensemble based active learning method to accelerate the local geometry optimization for multiple configurations simultaneously. We illustrate the acceleration on several case studies including bare metal surfaces, surfaces with adsorbates, and nudged elastic band for two reactions. In all cases, the accelerated method requires fewer DFT calculations than the standard method. In addition, we provide an Atomic Simulation Environment (ASE)-optimizer Python package to make the usage of the NN ensemble active learning for geometry optimization easier. [ABSTRACT FROM AUTHOR]

Copyright of Journal of Chemical Physics is the property of American Institute of Physics and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)