Treffer: Machine Learning Driven Prediction of Residual Stresses for the Shot Peening Process Using a Finite Element Based Grey-Box Model Approach.
Weitere Informationen
The shot peening process is a common procedure to enhance fatigue strength on loadbearing components in the metal processing environment. The determination of optimal process parameters is often carried out by costly practical experiments. An efficient method to predict the resulting residual stress profile using different parameters is finite element analysis. However, it is not possible to include all influencing factors of the materials’ physical behavior and the process conditions in a reasonable simulation. Therefore, data-driven models in combination with experimental data tend to generate a significant advantage for the accuracy of the resulting process model. For this reason, this paper describes the development of a grey-box model, using a two-dimensional geometry finite element modeling approach. Based on this model, a Python framework was developed, which is capable of predicting residual stresses for common shot peening scenarios. This white-box-based model serves as an initial state for the machine learning technique introduced in this work. The resulting algorithm is able to add input data from practical residual stress experiments by adapting the initial model, resulting in a steady increase of accuracy. To demonstrate the practical usage, a corresponding Graphical User Interface capable of recommending shot peening parameters based on user-required residual stresses was developed. [ABSTRACT FROM AUTHOR]
Copyright of Journal of Manufacturing & Materials Processing is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)