Serviceeinschränkungen vom 12.-22.02.2026 - weitere Infos auf der UB-Homepage

Treffer: An overview of information extraction techniques for legal document analysis and processing.

Title:
An overview of information extraction techniques for legal document analysis and processing.
Source:
International Journal of Electrical & Computer Engineering (2088-8708); Dec2021, Vol. 11 Issue 6, p5450-5457, 8p
Database:
Complementary Index

Weitere Informationen

In an Indian law system, different courts publish their legal proceedings every month for future reference of legal experts and common people. Extensive manual labor and time are required to analyze and process the information stored in these lengthy complex legal documents. Automatic legal document processing is the solution to overcome drawbacks of manual processing and will be very helpful to the common man for a better understanding of a legal domain. In this paper, we are exploring the recent advances in the field of legal text processing and provide a comparative analysis of approaches used for it. In this work, we have divided the approaches into three classes NLP based, deep learning-based and, KBP based approaches. We have put special emphasis on the KBP approach as we strongly believe that this approach can handle the complexities of the legal domain well. We finally discuss some of the possible future research directions for legal document analysis and processing. [ABSTRACT FROM AUTHOR]

Copyright of International Journal of Electrical & Computer Engineering (2088-8708) is the property of Institute of Advanced Engineering & Science and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)