Treffer: PyDTNN: A user-friendly and extensible framework for distributed deep learning.

Title:
PyDTNN: A user-friendly and extensible framework for distributed deep learning.
Source:
Journal of Supercomputing; Sep2021, Vol. 77 Issue 9, p9971-9987, 17p
Database:
Complementary Index

Weitere Informationen

We introduce a framework for training deep neural networks on clusters of computers with the following appealing properties: (1) It is developed in Python, exposing an amiable interface that provides an accessible entry point for the newcomer; (2) it is extensible, offering a customizable tool for the more advanced user in deep learning; (3) it covers the main functionality appearing in convolutional neural networks; and (4) it delivers reasonable inter-node parallel performance exploiting data parallelism by leveraging MPI via MPI4Py for communication and NumPy for the efficient execution of (multithreaded) numerical kernels. [ABSTRACT FROM AUTHOR]

Copyright of Journal of Supercomputing is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)