Treffer: Forward stepwise random forest analysis for experimental designs.

Title:
Forward stepwise random forest analysis for experimental designs.
Authors:
Source:
Journal of Quality Technology; 2021, Vol. 53 Issue 5, p488-504, 17p
Database:
Complementary Index

Weitere Informationen

In experimental designs, it is usually assumed that the data follow normal distributions and the models have linear structures. In practice, experimenters may encounter different types of responses and be uncertain about model structures. If this is the case, traditional methods, such as the ANOVA and regression, are not suitable for data analysis and model selection. We introduce the random forest analysis, which is a powerful machine learning method capable of analyzing numerical and categorical data with complicated model structures. To perform model selection and factor identification with the random forest method, we propose a forward stepwise algorithm and develop Python and R codes based on minimizing the OOB error. Six examples including simulation and case studies are provided. We compare the performance of the proposed method and some frequently used analysis methods. Results show that the forward stepwise random forest analysis, in general, has a high power for identifying active factors and selects models that have high prediction accuracy. [ABSTRACT FROM AUTHOR]

Copyright of Journal of Quality Technology is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)