Treffer: An open source library to parse and analyze online collaborative knowledge-building portals.

Title:
An open source library to parse and analyze online collaborative knowledge-building portals.
Source:
Journal of Internet Services & Applications; 11/2/2021, Vol. 12 Issue 1, p1-24, 24p
Reviews & Products:
Database:
Complementary Index

Weitere Informationen

With the success of collaborative knowledge-building portals, such as Wikipedia, Stack Overflow, Quora, and GitHub, a class of researchers is driven towards understanding the dynamics of knowledge building on these portals. Even though collaborative knowledge building portals are known to be better than expert-driven knowledge repositories, limited research has been performed to understand the knowledge building dynamics in the former. This is mainly due to two reasons; first, unavailability of the standard data representation format, second, lack of proper tools and libraries to analyze the knowledge building dynamics.We describe Knowledge Data Analysis and Processing Platform (KDAP), a programming toolkit that is easy to use and provides high-level operations for analysis of knowledge data. We propose Knowledge Markup Language (Knol-ML), a generic representation format for the data of collaborative knowledge building portals. KDAP can process the massive data of crowdsourced portals like Wikipedia and Stack Overflow efficiently. As a part of this toolkit, a data-dump of various collaborative knowledge building portals is published in Knol-ML format. The combination of Knol-ML and the proposed open-source library will help the knowledge building community to perform benchmark analysis.Link of the repository: Verma et al. (2020)Video Tutorial: Verma et al. (2020)Supplementary Material: Verma et al. (2020) [ABSTRACT FROM AUTHOR]

Copyright of Journal of Internet Services & Applications is the property of Sociedade Brasileira de Computacao (SBC) and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)