Treffer: Web Scraping or Web Crawling: State of Art, Techniques, Approaches and Application.
Weitere Informationen
Web scraping or web crawling refers to the procedure of automatic extraction of data from websites using software. It is a process that is particularly important in fields such as Business Intelligence in the modern age. Web scrapping is a technology that allow us to extract structured data from text such as HTML. Web scrapping is extremely useful in situations where data isn't provided in machine readable format such as JSON or XML. The use of web scrapping to gather data allows us to gather prices in near real time from retail store sites and provide further details, web scrapping can also be used to gather intelligence of illicit businesses such as drug marketplaces in the darknet to provide law enforcement and researchers valuable data such as drug prices and varieties that would be unavailable with conventional methods. It has been found that using a web scraping program would yield data that is far more thorough, accurate, and consistent than manual entry. Based on the result it has been concluded that Web scraping is a highly useful tool in the information age, and an essential one in the modern fields. Multiple technologies are required to implement web scrapping properly such as spidering and pattern matching which are discussed. This paper is looking into what web scraping is, how it works, web scraping stages, technologies, how it relates to Business Intelligence, artificial intelligence, data science, big data, cyber security, how it can be done with the Python language, some of the main benefits of web scraping, and what the future of web scraping may look like, and a special degree of emphasis is placed on highlighting the ethical and legal issues. [ABSTRACT FROM AUTHOR]
Copyright of International Journal of Advances in Soft Computing & Its Applications is the property of Al-Zaytoonah University of Jordan, Faculty of Science & Information Technology and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)