Treffer: Transformation of a rolling mill aggregate to a cyber physical production system: from sensor retrofitting to machine learning.

Title:
Transformation of a rolling mill aggregate to a cyber physical production system: from sensor retrofitting to machine learning.
Source:
Journal of Intelligent Manufacturing; Feb2022, Vol. 33 Issue 2, p493-518, 26p
Database:
Complementary Index

Weitere Informationen

This paper describes the transformation of a rolling mill aggregate from a stand-alone solution to a fully integrated cyber physical production system. Within this process, already existing load cells were substituted and additional inductive and magnetic displacement sensors were applied. After calibration, those were fully integrated into a six-layer digitalization architecture at the Smart Forming Lab at the Chair of Metal Forming (Montanuniversitaet Leoben). Within this framework, two front end human machine interfaces were designed, where the first one serves as a condition monitoring system during the rolling process. The second user interface visualizes the result of a resilient machine learning algorithm, which was designed using Python and is not just able to predict and adapt the resulting rolling schedule of a defined metal sheet, but also to learn from additional rolling mill schedules carried out. This algorithm was created on the basis of a black box approach, using data from more than 1900 milling steps with varying roll gap height, sheet width and friction conditions. As a result, the developed program is able to interpolate and extrapolate between these parameters as well as different initial sheet thicknesses, serving as a digital twin for data-based recommendations on schedule changes between different rolling process steps. Furthermore, via the second user interface, it is possible to visualize the influence of this parameters on the result of the milling process. As the whole layer system runs on an internal server at the university, students and other interested parties are able to access the visualization and can therefore use the environment to deepen their knowledge within the characteristics and influence of the sheet metal rolling process as well as data science and especially fundamentals of machine learning. This algorithm also serves as a basis for further integration of materials science based data for the prediction of the influence of different materials on the rolling result. To do so, the rolled specimens were also analyzed regarding the influence of the plastic strain path on their mechanical properties, including anisotropy and materials' strength. [ABSTRACT FROM AUTHOR]

Copyright of Journal of Intelligent Manufacturing is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)