Treffer: A Machine Learning Model for the Prediction of Concrete Penetration by the Ogive Nose Rigid Projectile.

Title:
A Machine Learning Model for the Prediction of Concrete Penetration by the Ogive Nose Rigid Projectile.
Source:
Applied Sciences (2076-3417); Feb2022, Vol. 12 Issue 4, p2040, 20p
Database:
Complementary Index

Weitere Informationen

In recent years, research interest has been revolutionized to predict the rigid projectile penetration depth in concrete. The concrete penetration predictions persist, unsettled, due to the complexity of phenomena and the continuous development of revolutionized statistical techniques, such as machine learning, neural networks, and deep learning. This research aims to develop a new model to predict the penetration depth of the ogive nose rigid projectile into concrete blocks using machine learning. Genetic coding is used in Python programming to discover the underlying mathematical relationship from the experimental data in its non-dimensional form. A populace of erratic formulations signifies the rapport amid dependent parameters, such as the impact factor (I), the geometry function of the projectile (N), the empirical constant for concrete strength (S), the slenderness of the projectile (λ), and their independent objective variable, X/d, where X is the penetration depth of the projectile and d is the diameter of the projectile. Four genetic operations were used, including the crossover, sub-tree transfiguration, hoist transfiguration, and point transfiguration operations on supervised test datasets, which were divided into three categories, namely, narrow penetration (X/d < 0.5), intermediate penetration (0.5 ≤ X/d < 5.0), and deep penetration (X/d ≥ 5.0). The proposed model shows a significant relationship with all data in the category for medium penetration, where R<sup>2</sup> = 0.88, and R<sup>2</sup> = 0.96 for deep penetration. Furthermore, the proposed model predictions are also compared with the most commonly used NDRC and Li and Chen models. The outcome of this research shows that the proposed model predicts the penetration depth precisely, compared to the NDRC and Li and Chen models. [ABSTRACT FROM AUTHOR]

Copyright of Applied Sciences (2076-3417) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)