Serviceeinschränkungen vom 12.-22.02.2026 - weitere Infos auf der UB-Homepage

Treffer: A natural language processing model for supporting sustainable development goals: translating semantics, visualizing nexus, and connecting stakeholders.

Title:
A natural language processing model for supporting sustainable development goals: translating semantics, visualizing nexus, and connecting stakeholders.
Source:
Sustainability Science; May2022, Vol. 17 Issue 3, p969-985, 17p
Database:
Complementary Index

Weitere Informationen

Sharing successful practices with other stakeholders is important for achieving SDGs. In this study, with a deep-learning natural language processing model, bidirectional encoder representations from transformers (BERT), the authors aimed to build (1) a classifier that enables semantic mapping of practices and issues in the SDGs context, (2) a visualizing method of SDGs nexus based on co-occurrence of goals (3) a matchmaking process between local issues and initiatives that may embody solutions. A data frame was built using documents published by official organizations and multi-labels corresponding to SDGs. A pretrained Japanese BERT model was fine-tuned on a multi-label text classification task, while nested cross-validation was conducted to optimize the hyperparameters and estimate cross-validation accuracy. A system was then developed to visualize the co-occurrence of SDGs and to couple the stakeholders by evaluating embedded vectors of local challenges and solutions. The paper concludes with a discussion of four future perspectives to improve the natural language processing system. This intelligent information system is expected to help stakeholders take action to achieve the sustainable development goals. [ABSTRACT FROM AUTHOR]

Copyright of Sustainability Science is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)