Treffer: Deep Declarative Networks.
Weitere Informationen
We explore a class of end-to-end learnable models wherein data processing nodes (or network layers) are defined in terms of desired behavior rather than an explicit forward function. Specifically, the forward function is implicitly defined as the solution to a mathematical optimization problem. Consistent with nomenclature in the programming languages community, we name these models deep declarative networks. Importantly, it can be shown that the class of deep declarative networks subsumes current deep learning models. Moreover, invoking the implicit function theorem, we show how gradients can be back-propagated through many declaratively defined data processing nodes thereby enabling end-to-end learning. We discuss how these declarative processing nodes can be implemented in the popular PyTorch deep learning software library allowing declarative and imperative nodes to co-exist within the same network. We also provide numerous insights and illustrative examples of declarative nodes and demonstrate their application for image and point cloud classification tasks. [ABSTRACT FROM AUTHOR]
Copyright of IEEE Transactions on Pattern Analysis & Machine Intelligence is the property of IEEE and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)