Treffer: A Low-Computing-Complexity Touch Signal Detection Method and Analog Front-End Circuits Based on Cross-Correlation Technology for Large-Size Touch Panel.
Weitere Informationen
This paper proposes a low-computing-complexity touch signal detection method and analog front-end (AFE) circuits based on cross-correlation technology for large mutual capacitance touch screen panels (TSPs). To solve the traditional touch signal detection method problem of lots of invalid data being sampled and processed in a large-size TSP, the proposed method only samples and processes the signals around the touch points rather than full-screen data to decrease the computing complexity and analog–digital convertor (ADC) acquisition number. Compared with the traditional method, the proposed touch points search algorithm complexity decreases from MN to M + nN where M, N, and n are the number of RX channels, TX channels, and touch points, respectively. The maximum ADC acquisition number of the proposed method decreases from MN to 18n. Based on the proposed touch signal detection method, the AFE circuits are designed by a 0.11 μm process. The proposed dual cross-correlation AFE achieves detection of the weak touch signal submerged in the large display panel noise. The average channel area and power consumption are decreased to 0.015 mm<sup>2</sup> and 0.227 mW, respectively. The maximum frame rate is 384.6 Hz with 10 touch points. The proposed cross-correlation AFE achieves a high frame rate while reducing the die area and power consumption. [ABSTRACT FROM AUTHOR]
Copyright of Sensors (14248220) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)