Treffer: شىاسایی ي ارزیابی عًامل خطر در زوجیرٌ تأمیه صىایع داريیی با استفادٌ از ًَش مصىًعی.
Weitere Informationen
Background and Aim: As difficulties increase, the level of uncertainty and risk in the supply chain increases. Medicine is a strategic product and is directly related to community health. The aim of this study is to evaluate the risk factors of pharmaceutical supply chain with artificial intelligence methods. Materials and Methods: By reviewing the texts and interviewed 6 adept experts who had a Master ’s degree and Ph.D. and had experience between 7 and 15 years in the field of risk and pharmaceutical supply chain, risk factors were identified. Finally, using multilayered perceptron neural networks and support vector machines with polynomial linear kernel functions and radial base in two low -risk and high -risk classes were classified in Python software. Results: 22 factors were identified and classified using neural networks in 5 categories: assets, network and transportation, government and market, strategy and supplier. Shift in interest and inflation, Changes in exchange rates, Inflexibility in production and disruption of customer service are the most important risks in the pharmaceutical supply chain, respectively. The results of evaluation criteria showed that the multilayer perceptron model had better performance than the support vector machines with linear, polynomial and radial basis functions. Conclusion: The results showed that artificial neural networks are able to classify pharmaceutical supply chain risk factors with acceptable accuracy. As a result, classification of risk factors with an accuracy of 97/07% indicates the high ability of multilayer perceptron network in risk assessment of pharmaceutical supply chain. [ABSTRACT FROM AUTHOR]
Copyright of Hospital Journal is the property of Tehran University of Medical Sciences and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)