Treffer: Effector-GAN: prediction of fungal effector proteins based on pretrained deep representation learning methods and generative adversarial networks.
Weitere Informationen
Motivation Phytopathogenic fungi secrete effector proteins to subvert host defenses and facilitate infection. Systematic analysis and prediction of candidate fungal effector proteins are crucial for experimental validation and biological control of plant disease. However, two problems are still considered intractable to be solved in fungal effector prediction: one is the high-level diversity in effector sequences that increases the difficulty of protein feature learning, and the other is the class imbalance between effector and non-effector samples in the training dataset. Results In our study, pretrained deep representation learning methods are presented to represent multiple characteristics of sequences for predicting fungal effectors and generative adversarial networks are adapted to create synthetic feature samples to address the data imbalance problem. Compared with the state-of-the-art fungal effector prediction methods, Effector-GAN shows an overall improvement in accuracy in the independent test set. Availability and implementation Effector-GAN offers a user-friendly interface to inspect potential fungal effector proteins (http://lab.malab.cn/~wys/webserver/Effector-GAN). The Python script can be downloaded from http://lab.malab.cn/~wys/gitlab/effector-gan. Supplementary information Supplementary data are available at Bioinformatics online. [ABSTRACT FROM AUTHOR]
Copyright of Bioinformatics is the property of Oxford University Press / USA and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)