Treffer: unifying network modeling approach for codon optimization.

Title:
unifying network modeling approach for codon optimization.
Source:
Bioinformatics; 8/15/2022, Vol. 38 Issue 16, p3935-3941, 7p
Database:
Complementary Index

Weitere Informationen

Motivation Synthesizing genes to be expressed in other organisms is an essential tool in biotechnology. While the many-to-one mapping from codons to amino acids makes the genetic code degenerate, codon usage in a particular organism is not random either. This bias in codon use may have a remarkable effect on the level of gene expression. A number of measures have been developed to quantify a given codon sequence's strength to express a gene in a host organism. Codon optimization aims to find a codon sequence that will optimize one or more of these measures. Efficient computational approaches are needed since the possible number of codon sequences grows exponentially as the number of amino acids increases. Results We develop a unifying modeling approach for codon optimization. With our mathematical formulations based on graph/network representations of amino acid sequences, any combination of measures can be optimized in the same framework by finding a path satisfying additional limitations in an acyclic layered network. We tested our approach on bi-objectives commonly used in the literature, namely, Codon Pair Bias versus Codon Adaptation Index and Relative Codon Pair Bias versus Relative Codon Bias. However, our framework is general enough to handle any number of objectives concurrently with certain restrictions or preferences on the use of specific nucleotide sequences. We implemented our models using Python's Gurobi interface and showed the efficacy of our approach even for the largest proteins available. We also provided experimentation showing that highly expressed genes have objective values close to the optimized values in the bi-objective codon design problem. Availability and implementation http://alpersen.bilkent.edu.tr/NetworkCodon.zip. Supplementary information Supplementary data are available at Bioinformatics online. [ABSTRACT FROM AUTHOR]

Copyright of Bioinformatics is the property of Oxford University Press / USA and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)