Treffer: Bayesian Performance Analysis for Algorithm Ranking Comparison.

Title:
Bayesian Performance Analysis for Algorithm Ranking Comparison.
Source:
IEEE Transactions on Evolutionary Computation; Dec2022, Vol. 26 Issue 6, p1281-1292, 12p
Database:
Complementary Index

Weitere Informationen

In the field of optimization and machine learning, the statistical assessment of results has played a key role in conducting algorithmic performance comparisons. Classically, null hypothesis statistical tests have been used. However, recently, alternatives based on Bayesian statistics have shown great potential in complex scenarios, especially when quantifying the uncertainty in the comparison. In this work, we delve deep into the Bayesian statistical assessment of experimental results by proposing a framework for the analysis of several algorithms on several problems/instances. To this end, experimental results are transformed to their corresponding rankings of algorithms, assuming that these rankings have been generated by a probability distribution (defined on permutation spaces). From the set of rankings, we estimate the posterior distribution of the parameters of the studied probability models, and several inferences concerning the analysis of the results are examined. Particularly, we study questions related to the probability of having one algorithm in the first position of the ranking or the probability that two algorithms are in the same relative position in the ranking. Not limited to that, the assumptions, strengths, and weaknesses of the models in each case are studied. To help other researchers to make use of this kind of analysis, we provide a Python package and source code implementation at https://zenodo.org/record/6320599. [ABSTRACT FROM AUTHOR]

Copyright of IEEE Transactions on Evolutionary Computation is the property of IEEE and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)