Treffer: Large-Scale Tactile Detection System Based on Supervised Learning for Service Robots Human Interaction.

Title:
Large-Scale Tactile Detection System Based on Supervised Learning for Service Robots Human Interaction.
Source:
Sensors (14248220); Jan2023, Vol. 23 Issue 2, p825, 11p
Database:
Complementary Index

Weitere Informationen

In this work, a large-scale tactile detection system is proposed, whose development is based on a soft structure using Machine Learning and Computer Vision algorithms to map the surface of a forearm sleeve. The current application has a cylindrical design, whose dimensions intend to be like a human forearm or bicep. The model was developed assuming that deformations occur only at one section at a time. The goal for this system is to be coupled with the CHARMIE robot, a collaborative robot for domestic and medical environments. This system allows the contact detection of the entire forearm surface enabling interaction between a Human Being and a robot. A matrix with sections can be configured to present certain functionalities, allowing CHARMIE to detect contact in a particular section, and thus perform a specific behaviour. After building the dataset, an Artificial Neural Network (ANN) was created. This network was called Section Detection Network (SDN), and through Supervised Learning, a model was created to predict the contact location. Furthermore, Stratified K-Fold Cross Validation (SKFCV) was used to divide the dataset. All these steps resulted in Neural Network with a test data accuracy higher than 80%. Regarding the real-time evaluation, a graphical interface was structured to demonstrate the predicted class and the corresponding probability. This research concluded that the method described has enormous potential to be used as a tool for service robots allowing enhanced human-robot interaction. [ABSTRACT FROM AUTHOR]

Copyright of Sensors (14248220) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)