Treffer: DagSim: Combining DAG-based model structure with unconstrained data types and relations for flexible, transparent, and modularized data simulation.

Title:
DagSim: Combining DAG-based model structure with unconstrained data types and relations for flexible, transparent, and modularized data simulation.
Source:
PLoS ONE; 4/14/2023, Vol. 18 Issue 4, p1-9, 9p
Database:
Complementary Index

Weitere Informationen

Data simulation is fundamental for machine learning and causal inference, as it allows exploration of scenarios and assessment of methods in settings with full control of ground truth. Directed acyclic graphs (DAGs) are well established for encoding the dependence structure over a collection of variables in both inference and simulation settings. However, while modern machine learning is applied to data of an increasingly complex nature, DAG-based simulation frameworks are still confined to settings with relatively simple variable types and functional forms. We here present DagSim, a Python-based framework for DAG-based data simulation without any constraints on variable types or functional relations. A succinct YAML format for defining the simulation model structure promotes transparency, while separate user-provided functions for generating each variable based on its parents ensure simulation code modularization. We illustrate the capabilities of DagSim through use cases where metadata variables control shapes in an image and patterns in bio-sequences. DagSim is available as a Python package at PyPI. Source code and documentation are available at: https://github.com/uio-bmi/dagsim [ABSTRACT FROM AUTHOR]

Copyright of PLoS ONE is the property of Public Library of Science and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)