Treffer: FUZZY MODEL FOR TIME SERIES FORECASTING.
Weitere Informationen
In 2007, in Kazakhstan, there was a transition of TDM (Time Division Multiplexing) circuit-switched technologies to IP (Internet Protocol) packet technology, which created a modern infrastructure for the ICT (information communication technologies) sphere. The advent of the IoT (Internet of Things) concept has led to the growth of a functioning network at a faster rate. It is currently developing in the direction of a cognitive infocommunication network. Its evolutionary development is characterized by a change in the volume of transmitted information, types of its presentation, methods of transmission and storage, the number of sources and consumers, distribution among users, and requirements for timeliness and reliability (quality) [1]. Types of traffic and their structure are changing; therefore, data processing becomes more complicated. For this reason, the tasks of analyzing and predicting network traffic remain relevant. In this work, the prediction of the measured traffic on a real network is performed. The series under study shows the totality of packets transmitted over the backbone network for each second. Forecasting of a one-dimensional time series is carried out on the basis of fuzzy logic methods. This class of models is well suited for modeling nonlinear systems and time series forecasting. The use of fuzzy sets is based on the ability of fuzzy models to approximate functions, as well as on the readability of rules using linguistic variables. The results of the software algorithm of fuzzy inference models were obtained using the Python environment. Membership functions and predictive graphs were built, and their evaluation was carried out. The numerical values of the root mean square error (MSE) are calculated. As a result, it was found that the Cheng fuzzy prediction model has higher forecast accuracy than the Chen forecasting method. [ABSTRACT FROM AUTHOR]
Copyright of Scientific Journal of Astana IT University is the property of Astana IT University and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)