Treffer: MESSES: Software for Transforming Messy Research Datasets into Clean Submissions to Metabolomics Workbench for Public Sharing.

Title:
MESSES: Software for Transforming Messy Research Datasets into Clean Submissions to Metabolomics Workbench for Public Sharing.
Source:
Metabolites (2218-1989); Jul2023, Vol. 13 Issue 7, p842, 25p
Database:
Complementary Index

Weitere Informationen

In recent years, the FAIR guiding principles and the broader concept of open science has grown in importance in academic research, especially as funding entities have aggressively promoted public sharing of research products. Key to public research sharing is deposition of datasets into online data repositories, but it can be a chore to transform messy unstructured data into the forms required by these repositories. To help generate Metabolomics Workbench depositions, we have developed the MESSES (Metadata from Experimental SpreadSheets Extraction System) software package, implemented in the Python 3 programming language and supported on Linux, Windows, and Mac operating systems. MESSES helps transform tabular data from multiple sources into a Metabolomics Workbench specific deposition format. The package provides three commands, extract, validate, and convert, that implement a natural data transformation workflow. Moreover, MESSES facilitates richer metadata capture than is typically attempted by manual efforts. The source code and extensive documentation is hosted on GitHub and is also available on the Python Package Index for easy installation. [ABSTRACT FROM AUTHOR]

Copyright of Metabolites (2218-1989) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)