Treffer: Mass-Suite: a novel open-source python package for high-resolution mass spectrometry data analysis.

Title:
Mass-Suite: a novel open-source python package for high-resolution mass spectrometry data analysis.
Source:
Journal of Cheminformatics; 9/23/2023, Vol. 15 Issue 1, p1-13, 13p
Database:
Complementary Index

Weitere Informationen

Mass-Suite (MSS) is a Python-based, open-source software package designed to analyze high-resolution mass spectrometry (HRMS)-based non-targeted analysis (NTA) data, particularly for water quality assessment and other environmental applications. MSS provides flexible, user-defined workflows for HRMS data processing and analysis, including both basic functions (e.g., feature extraction, data reduction, feature annotation, data visualization, and statistical analyses) and advanced exploratory data mining and predictive modeling capabilities that are not provided by currently available open-source software (e.g., unsupervised clustering analyses, a machine learning-based source tracking and apportionment tool). As a key advance, most core MSS functions are supported by machine learning algorithms (e.g., clustering algorithms and predictive modeling algorithms) to facilitate function accuracy and/or efficiency. MSS reliability was validated with mixed chemical standards of known composition, with 99.5% feature extraction accuracy and ~ 52% overlap of extracted features relative to other open-source software tools. Example user cases of laboratory data evaluation are provided to illustrate MSS functionalities and demonstrate reliability. MSS expands available HRMS data analysis workflows for water quality evaluation and environmental forensics, and is readily integrated with existing capabilities. As an open-source package, we anticipate further development of improved data analysis capabilities in collaboration with interested users. [ABSTRACT FROM AUTHOR]

Copyright of Journal of Cheminformatics is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)