Treffer: Teaching Data Science with Literate Programming Tools.
Weitere Informationen
This paper presents a case study on using Emacs and Org-mode for literate programming in undergraduate computer and data science courses. Over three academic terms, the author mandated these tools across courses in R, Python, C++, SQL, and more. The onboarding relied on simplified Emacs tutorials and starter configurations. Students gained proficiency after undertaking initial practice. Live coding sessions demonstrated the flexible instruction enabled by literate notebooks. Assignments and projects required documentation alongside functional code. Student feedback showed enthusiasm for learning a versatile IDE, despite some frustration with the learning curve. Skilled students highlighted efficiency gains in a unified environment. However, the uneven adoption of documentation practices pointed to a need for better incorporation into grading. Additionally, some students found Emacs unintuitive, desiring more accessible options. This highlights a need to match tools to skill levels, potentially starting novices with graphical IDEs before introducing Emacs. The key takeaways are as follows: literate programming aids comprehension but requires rigorous onboarding and reinforcement, and Emacs excels for advanced workflows but has a steep initial curve. With proper support, these tools show promise for data science education. [ABSTRACT FROM AUTHOR]
Copyright of Digital is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)