Treffer: plotnineSeqSuite: a Python package for visualizing sequence data using ggplot2 style.
Weitere Informationen
Background: The visual sequence logo has been a hot area in the development of bioinformatics tools. ggseqlogo written in R language has been the most popular API since it was published. With the popularity of artificial intelligence and deep learning, Python is currently the most popular programming language. The programming language used by bioinformaticians began to shift to Python. Providing APIs in Python that are similar to those in R can reduce the learning cost of relearning a programming language. And compared to ggplot2 in R, drawing framework is not as easy to use in Python. The appearance of plotnine (ggplot2 in Python version) makes it possible to unify the programming methods of bioinformatics visualization tools between R and Python. Results: Here, we introduce plotnineSeqSuite, a new plotnine-based Python package provides a ggseqlogo-like API for programmatic drawing of sequence logos, sequence alignment diagrams and sequence histograms. To be more precise, it supports custom letters, color themes, and fonts. Moreover, the class for drawing layers is based on object-oriented design so that users can easily encapsulate and extend it. Conclusions: plotnineSeqSuite is the first ggplot2-style package to implement visualization of sequence -related graphs in Python. It enhances the uniformity of programmatic plotting between R and Python. Compared with tools appeared already, the categories supported by plotnineSeqSuite are much more complete. The source code of plotnineSeqSuite can be obtained on GitHub (https://github.com/caotianze/plotnineseqsuite) and PyPI (https://pypi.org/project/plotnineseqsuite), and the documentation homepage is freely available on GitHub at (https://caotianze.github.io/plotnineseqsuite/). [ABSTRACT FROM AUTHOR]
Copyright of BMC Genomics is the property of BioMed Central and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)