Treffer: Overview of PoliticES at IberLEF 2023: Political Ideology Detection in Spanish Texts.

Title:
Overview of PoliticES at IberLEF 2023: Political Ideology Detection in Spanish Texts.
Alternate Title:
Resumen de la tarea PoliticES en IberLEF 2023: Detección de Ideología Política en Español. (Spanish)
Source:
Procesamiento del Lenguaje Natural; sep2023, Vol. 71, p409-416, 8p
Database:
Complementary Index

Weitere Informationen

This paper describes PoliticES 2023, a shared task organized within the workshop IberLEF 2023 in the framework of the 39th edition of the International Conference of the Spanish Society for Natural Language Processing. This second edition of the task shares the goal of the first edition of PoliticES, which is to extract political ideology and other psychographic and demographic characteristics of users in social networks. What is new this year is that the traits are extracted from text clusters of users who share the same traits, and that celebrities have been included as a type of profession. This edition attracted 43 teams, of which 11 submitted results and 8 sent papers describing their systems. Most of the participants proposed Transformers-based approaches, but others also used traditional machine learning algorithms. [ABSTRACT FROM AUTHOR]

Este artículo describe PoliticES 2023, una tarea organizada dentro del taller IberLEF 2023 en el marco de la 39 edición del Congreso Internacional de la Sociedad Espanola para el Procesamiento del Lenguaje Natural. Esta segunda edicioín de la tarea comparte el objetivo de la primera edicioín de PoliticES, extraer la ideología política y otros rasgos psicogríaficos y demogríaficos de usuarios en redes sociales. Las novedades son que este ano los rasgos se extraen de clusters de textos de usuarios que comparten los mismos rasgos y que se ha incluido celebridades como tipo de profesiíon. Esta edicioín ha atraido a 43 equipos, de los cuales 11 enviaron resultados y 8 presentaron artículos describiendo sus sistemas. La mayoría de los participantes propusieron enfoques basados en Transformers, pero tambiíen otros utilizaron algoritmos tradicionales de aprendizaje automaítico. [ABSTRACT FROM AUTHOR]

Copyright of Procesamiento del Lenguaje Natural is the property of Sociedad Espanola para el Procesamiento del Lenguaje Natural and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)