Treffer: An Introduction to Programming Physics-Informed Neural Network-Based Computational Solid Mechanics.

Title:
An Introduction to Programming Physics-Informed Neural Network-Based Computational Solid Mechanics.
Source:
International Journal of Computational Methods; Dec2023, Vol. 20 Issue 10, p1-29, 29p
Database:
Complementary Index

Weitere Informationen

Physics-informed neural network (PINN) has recently gained increasing interest in computational mechanics. This work extends the PINN to computational solid mechanics problems. Our focus will be on the investigation of various formulation and programming techniques, when governing equations of solid mechanics are implemented. Two prevailingly used physics-informed loss functions for PINN-based computational solid mechanics are implemented and examined. Numerical examples ranging from 1D to 3D solid problems are presented to show the performance of PINN-based computational solid mechanics. The programs are built via Python with TensorFlow library with step-by-step explanations and can be extended for more challenging applications. This work aims to help the researchers who are interested in the PINN-based solid mechanics solver to have a clear insight into this emerging area. The programs for all the numerical examples presented in this work are available at https://github.com/JinshuaiBai/PINN_Comp_Mech. [ABSTRACT FROM AUTHOR]

Copyright of International Journal of Computational Methods is the property of World Scientific Publishing Company and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)