Treffer: Graph neural architecture prediction.

Title:
Graph neural architecture prediction.
Source:
Knowledge & Information Systems; Jan2024, Vol. 66 Issue 1, p29-58, 30p
Database:
Complementary Index

Weitere Informationen

Graph neural networks (GNNs) have shown their superiority in the modeling of graph data. Recently, increasing attention has been paid to automatic graph neural architecture search, aiming to overcome the shortcomings of manually constructing GNN architectures that requires a lot of expert experience. However, existing graph neural architecture search (GraphNAS) methods can only select architecture from the partial evaluated GNN architectures. To solve the challenges, we propose a GraphNeural Architecture Prediction (GraphNAP) framework, which can select the optimal GNN architecture from the search space efficiently. To achieve this goal, a neural predictor is designed in GraphNAP. Firstly, the neural predictor is trained by a small number of sampled GNN architectures. Then, the trained neural predictor is used to predict all GNN architectures in the search space. In this way, GraphNAP can efficiently explore the performance of all GNN architectures in the search space and then select the optimal GNN architecture. The experimental results show that GraphNAP outperforms state-of-the-art both handcrafted and GraphNAS-based methods for both graph and node classification tasks. The python implementation of GraphNAP can be found at https://github.com/BeObm/GraphNAP. [ABSTRACT FROM AUTHOR]

Copyright of Knowledge & Information Systems is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)