Treffer: Artificial intelligence for skin permeability prediction: deep learning.

Title:
Artificial intelligence for skin permeability prediction: deep learning.
Source:
Journal of Drug Targeting; 2024, Vol. 32 Issue 3, p334-346, 13p
Database:
Complementary Index

Weitere Informationen

Researchers have put in significant laboratory time and effort in measuring the permeability coefficient (Kp) of xenobiotics. To develop alternative approaches to this labour-intensive procedure, predictive models have been employed by scientists to describe the transport of xenobiotics across the skin. Most quantitative structure-permeability relationship (QSPR) models are derived statistically from experimental data. Recently, artificial intelligence-based computational drug delivery has attracted tremendous interest. Deep learning is an umbrella term for machine-learning algorithms consisting of deep neural networks (DNNs). Distinct network architectures, like convolutional neural networks (CNNs), feedforward neural networks (FNNs), and recurrent neural networks (RNNs), can be employed for prediction. In this project, we used a convolutional neural network, feedforward neural network, and recurrent neural network to predict skin permeability coefficients from a publicly available database reported by Cheruvu et al. The dataset contains 476 records of 145 chemicals, xenobiotics, and pharmaceuticals, administered on the human epidermis in vitro from aqueous solutions of constant concentration either saturated in infinite dose quantities or diluted. All the computations were conducted with Python under Anaconda and Jupyterlab environment after importing the required Python, Keras, and Tensorflow modules. We used a convolutional neural network, feedforward neural network, and recurrent neural network to predict log kp. This research work shows that deep learning networks can be successfully used to digitally screen and predict the skin permeability of xenobiotics. [ABSTRACT FROM AUTHOR]

Copyright of Journal of Drug Targeting is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)