Treffer: Cardiovascular Health Management in Diabetic Patients with Machine-Learning-Driven Predictions and Interventions.

Title:
Cardiovascular Health Management in Diabetic Patients with Machine-Learning-Driven Predictions and Interventions.
Source:
Applied Sciences (2076-3417); Mar2024, Vol. 14 Issue 5, p2132, 23p
Database:
Complementary Index

Weitere Informationen

The advancement of machine learning in healthcare offers significant potential for enhancing disease prediction and management. This study harnesses the PyCaret library—a Python-based machine learning toolkit—to construct and refine predictive models for diagnosing diabetes mellitus and forecasting hospital readmission rates. By analyzing a rich dataset featuring a variety of clinical and demographic variables, we endeavored to identify patients at heightened risk for diabetes complications leading to readmissions. Our methodology incorporates an evaluation of numerous machine learning algorithms, emphasizing their predictive accuracy and generalizability to improve patient care. We scrutinized the predictive strength of each model concerning crucial metrics like accuracy, precision, recall, and the area under the curve, underlining the imperative to eliminate false diagnostics in the field. Special attention is given to the use of the light gradient boosting machine classifier among other advanced modeling techniques, which emerge as particularly effective in terms of the Kappa statistic and Matthews correlation coefficient, suggesting robustness in prediction. The paper discusses the implications of diabetes management, underscoring interventions like lifestyle changes and pharmacological treatments to avert long-term complications. Through exploring the intersection of machine learning and health informatics, the study reveals pivotal insights into algorithmic predictions of diabetes readmission. It also emphasizes the necessity for further research and development to fully incorporate machine learning into modern diabetes care to prompt timely interventions and achieve better overall health outcomes. The outcome of this research is a testament to the transformative impact of automated machine learning in the realm of healthcare analytics. [ABSTRACT FROM AUTHOR]

Copyright of Applied Sciences (2076-3417) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)