Treffer: Empowering students through active learning in educational big data analytics.
Weitere Informationen
Purpose: This paper explores how Educational Big Data Analytics can enhance student learning. It investigates the role of active learning in improving students' data analysis skills and critical thinking. By actively engaging students in data analysis assessments, the aim is to equip them with the skills to navigate the data-rich educational landscape. Methods: The study uses a teaching strategy that combines structured and unstructured data analysis using Python tools and ChatGPT APIs. It presents five assignments, each highlighting data analysis skills and encouraging critical thinking. Results: The paper offers insights into how the teaching strategy effectively enhances students' data analysis and critical thinking skills. It investigates the specific impact of active learning on students' engagement with educational data. The study reveals that all students can complete a comprehensive project, integrating the skills they have learned in the five assignments related to educational big data while incorporating the educational implications from their respective disciplines. Conclusion: The key lies in instructors being able to design individual assignments that link practical experiences, enabling each teaching session's effectiveness to accumulate in students' personal experiences and practical skills, ultimately empowering them with the abilities necessary to work effectively with Educational Big Data Analytics. The findings of this study make a valuable contribution to the ongoing conversation about enhancing the educational experience for students in this data-rich era. [ABSTRACT FROM AUTHOR]
Copyright of Smart Learning Environments is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)