Result: A PHREEQC-Based Tool for Planning and Control of In Situ Chemical Oxidation Treatment.
Further Information
Featured Application: This article describes a user-friendly tool to support ISCO remediation, which includes several feedback options for practitioners and experts. The open-source PHREEQC 2.18.0 and Python 3.7.0 software allow for the modelling and visualisation of monitoring and modelling results. This article describes a tool that can be used to improve the effectiveness of the ISCO (in situ chemical oxidation) method. It is an Excel-based application that uses Visual Basic, PHREEQC, and Python. The main functions are feedback control solutions. There are several ideas that can optimise ISCO treatment when using the geochemical model: (i) looping real-time data into the geochemical model and using them to estimate the actual rate, (ii) using spatial distribution maps for delineating zones that are susceptible or resistant to oxidation, (iii) visualising the permanganate consumption that could indicate the right time for further action, and (iv) using alarm reports of the abnormal physico-chemical conditions that jeopardise successful injection. [ABSTRACT FROM AUTHOR]
Copyright of Applied Sciences (2076-3417) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)