Treffer: Image recognition software geometry with Python and OpenCV.

Title:
Image recognition software geometry with Python and OpenCV.
Alternate Title:
Software de reconocimiento de imágenes geométricas con Python y OpenCV. (Spanish)
Source:
Journal Computer Technology; Jul-Dec2023, Vol. 7 Issue 19, p1-9, 9p
Database:
Complementary Index

Weitere Informationen

The project aims to develop a software application using Python and various libraries for image processing and manipulation. The software used consists of Windows 10 Pro Education, Python 3.8.2, OpenCV 4.5.3, NumPy 1.22, Imutils 0.5.4, Pillow 9.4.0, Tkinter, and Visual Studio Code 1.75.1. The methodology is divided into four sprints. In the first sprint, the necessary dependencies, including OpenCV, NumPy, Imutils, Pillow, and Tkinter, were installed. The second sprint involved developing a command-line interface and integrating a live webcam video feature. In the third sprint, color detection was implemented by converting the image to black and white and applying filters to identify specific colors. Finally, the fourth sprint focused on developing the selection of geometric figures and colors. When a figure and color were selected, the software would identify and outline the corresponding object. This project utilized Python and various libraries to create an application for image processing and manipulation. The methodology followed a sprint-based approach to gradually develop different features and functionalities of the software. [ABSTRACT FROM AUTHOR]

El proyecto tiene como objetivo desarrollar una aplicación de software utilizando Python y varias bibliotecas para el procesamiento y manipulación de imágenes. El software utilizado consiste en Windows 10 Pro Education, Python 3.8.2, OpenCV 4.5.3, NumPy 1.22, Imutils 0.5.4, Pillow 9.4.0, Tkinter y Visual Studio Code 1.75.1. La metodología se divide en cuatro sprints. En el primer sprint, se instalaron las dependencias necesarias, incluyendo OpenCV, NumPy, Imutils, Pillow y Tkinter. El segundo sprint involucró el desarrollo de una interfaz de línea de comandos y la integración de una función de video de cámara web en vivo. En el tercer sprint, la detección de color se implementó convirtiendo la imagen a blanco y negro y aplicando filtros para identificar colores específicos. Finalmente, el cuarto sprint se centró en desarrollar la selección de figuras geométricas y colores. Cuando se seleccionaba una figura y un color, el software identificaba y delineaba el objeto correspondiente. Este proyecto utilizó Python y varias bibliotecas para crear una aplicación para el procesamiento y manipulación de imágenes. La metodología siguió un enfoque basado en sprints para desarrollar gradualmente diferentes características y funcionalidades del software. [ABSTRACT FROM AUTHOR]

Copyright of Journal Computer Technology is the property of ECORFAN-Mexico S.C. and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)