Treffer: Bringing the ATLAS HammerCloud setup to the next level with containerization.

Title:
Bringing the ATLAS HammerCloud setup to the next level with containerization.
Source:
EPJ Web of Conferences; 5/6/2024, Vol. 295, p1-8, 8p
Database:
Complementary Index

Weitere Informationen

HammerCloud (HC) is a testing service and framework for continuous functional tests, on-demand large-scale stress tests, and performance benchmarks. It checks the computing resources and various components of distributed systems with realistic full-chain experiment workflows. The HammerCloud software was initially developed in Python 2. After support for Python 2 was discontinued in 2020, migration to Python 3 became vital in order to fulfill the latest security standards and to use the new CERN Single Sign-On, which requires Python 3. The current deployment setup based on RPMs allowed a stable deployment and secure maintenance over several years of operations for the ATLAS and CMS experiments. However, the current model is not flexible enough to support an agile and rapid development process. Therefore, we have decided to use a containerization solution, and switched to industry-standard technologies and processes. Having an "easy to spawn" instance of HC enables a more agile development cycle and easier deployment. With the help of such a containerized setup, CI/CD pipelines can be integrated into the automation process as an extra layer of verification. A quick onboarding process for new team members and communities is essential, as there is a lot of personnel rotation and a general lack of personpower. This is achieved with the container-based setup, as developers can now work locally with a quick turnaround without needing to set up a production-like environment first. These developments empower the whole community to test and prototype new ideas and deliver new types of resources or workflows to our community. [ABSTRACT FROM AUTHOR]

Copyright of EPJ Web of Conferences is the property of EDP Sciences and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)