Treffer: 4th-Order-SENS: A Software Module for Efficient and Exact 4th-Order Sensitivity Analysis of Neutron Transport.
Weitere Informationen
This work presents a software module called 4th-Order-SENS, which enables the efficient computation of exactly obtained expressions for all sensitivities, up to and including the 4th order, of a functional of the particle flux (e.g., the leakage of particles out of a body) with respect to nuclear parameters (total, scattering, and fission cross sections; nu, chi, sources; and number densities) for systems modeled by the neutron transport equation. The 4th-Order-SENS module implements the nth-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Linear Systems (nth-CASAM-L), which is the only practically implementable methodology for obtaining the exact expressions of arbitrarily high-order sensitivities of model responses to model parameters, for response-coupled forward/adjoint large-scale linear systems. In addition to presenting the equations that are solved to obtain the 1st-order through 4th-order sensitivities, this work also describes the components of the module 4th-Order-SENS, including the user interface, input file, output files, and several independent code verification capabilities using symmetries and/or finite-difference formulas. The 4th-Order-SENS module is written in Python and Fortran and runs on Linux platforms. Several illustrative applications involving fixed-source problems in one-dimensional spherical and slab geometries are also presented. [ABSTRACT FROM AUTHOR]
Copyright of Nuclear Science & Engineering is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)