Result: Detecting Source Code Plagiarism in Student Assignment Submissions Using Clustering Techniques.
Further Information
In pragmatic courses, graduate students are required to submit programming assignments, which have been susceptible to various forms of plagiarism. Detecting counterfeited code in an academic setting is of paramount importance, given the prevalence of publications and papers. Plagiarism, defined as the unauthorized replication of written work without proper acknowledgment, has become a critical concern with the advent of information and communication technology (ICT) and the widespread availability of scholarly publications online. However, the extensive use of freeware text editors has posed challenges in detecting source code plagiarism. Numerous studies have investigated algorithms for revealing different types of plagiarism and detecting source code plagiarism. In this research, we propose an innovative strategy that combines TF-IDF (Term Frequency-Inverse Document Frequency) modifications with K-means clustering, achieving a remarkable precision rate of 99.2%. Additionally, we explore the hierarchical clustering method, which estimates an even higher precision rate of 99.5% compared to previous techniques. To implement our approach, we utilize the Python programming language along with relevant libraries, providing a robust and efficient system for source code plagiarism detection in student assignment submissions. [ABSTRACT FROM AUTHOR]
المقال يركز على اكتشاف انتحال الشيفرة المصدرية في تقديمات الواجبات الطلابية باستخدام تقنيات التجميع، وبالتحديد من خلال دمج تعديلات تكرار المصطلحات - تكرار الوثائق العكسية (TF-IDF) وتجميع K-means. تبرز الأبحاث التحديات المتعلقة بالانتحال في الواجبات البرمجية وتقترح نهجًا جديدًا يحقق معدل دقة يبلغ 99.2% مع تجميع K-means و99.5% مع التجميع الهرمي. تستخدم الدراسة برمجة بايثون والمكتبات ذات الصلة لإنشاء نظام فعال لتحديد الشيفرة المنسوخة، مع التأكيد على أهمية طرق الكشف الآلي في الأوساط الأكاديمية. تشير النتائج إلى أن المنهجيات المقترحة تتفوق بشكل كبير على أدوات الكشف عن الانتحال الحالية. [Extracted from the article]
Copyright of Journal of Techniques is the property of Republic of Iraq Ministry of Higher Education & Scientific Research (MOHESR) and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)