Treffer: Development of a decision-making module in the field of real estate rental using machine learning methods.

Title:
Development of a decision-making module in the field of real estate rental using machine learning methods.
Source:
International Journal of Electrical & Computer Engineering (2088-8708); Oct2024, Vol. 14 Issue 5, p5430-5442, 13p
Database:
Complementary Index

Weitere Informationen

The research is aimed at developing a prototype of a decision support information system for managers of a company operating in the real estate rental industry. The system provides tools for data analysis, the use of mathematical models and expert knowledge to solve complex problems. The work analyzes the practical aspects of the design and use of decision support systems and formulates the requirements for the functionality of the system being developed. The Python programming language was used for implementation. The prototype includes machine learning models, expert systems, user interface and reports. Linear regression, data clustering density-based spatial clustering of applications with noise (DBSCAN) and backpropagation methods were implemented to train the classifying perceptron. The developed tool represents a significant contribution to the field of decision support, providing unique analysis and forecasting capabilities in the dynamic real estate rental environment. This prototype is an innovative solution that promotes effective management and strategic decision making in complex real estate business scenarios. [ABSTRACT FROM AUTHOR]

Copyright of International Journal of Electrical & Computer Engineering (2088-8708) is the property of Institute of Advanced Engineering & Science and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)