Treffer: Ensemble of physics-informed neural networks for solving plane elasticity problems with examples.

Title:
Ensemble of physics-informed neural networks for solving plane elasticity problems with examples.
Source:
Acta Mechanica; Nov2024, Vol. 235 Issue 11, p6703-6722, 20p
Database:
Complementary Index

Weitere Informationen

Two-dimensional (plane) elasticity equations in solid mechanics are solved numerically with the use of an ensemble of physics-informed neural networks (PINNs). The system of equations consists of the kinematic definitions, i.e. the strain–displacement relations, the equilibrium equations connecting a stress tensor with external loading forces and the isotropic constitutive relations for stress and strain tensors. Different boundary conditions for the strain tensor and displacements are considered. The proposed computational approach is based on principles of artificial intelligence and uses a developed open-source machine learning platform, scientific software Tensorflow, written in Python and Keras library, an application programming interface, intended for a deep learning. A deep learning is performed through training the physics-informed neural network model in order to fit the plain elasticity equations and given boundary conditions at collocation points. The numerical technique is tested on an example, where the exact solution is given. Two examples with plane stress problems are calculated with the proposed multi-PINN model. The numerical solution is compared with results obtained after using commercial finite element software. The numerical results have shown that an application of a multi-network approach is more beneficial in comparison with using a single PINN with many outputs. The derived results confirmed the efficiency of the introduced methodology. The proposed technique can be extended and applied to the structures with nonlinear material properties. [ABSTRACT FROM AUTHOR]

Copyright of Acta Mechanica is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)