Treffer: RETINAL IMAGING FOR DIABETIC RETINOPATHY DETECTION THROUGH DEEP LEARNING.
Weitere Informationen
The prevalence of diabetes is increasing globally, necessitating efficient methods to enhance the timely identification and treatment of diabetes, Focusing on early detection and effective management strategies for complications is essential. This study presents an integrated solution comprising two modules: diabetic detection and diabetic retinopathy detection. The diabetic detection module employs machine learning techniques like decision trees, random forests, and KNN for forecasting presence of diabetes based on patient data. The diabetic retinopathy detection module utilizes deep learning techniques, specifically the ResNet50 model architecture, to analyze retinal images and identify signs of diabetic retinopathy. A comprehensive implementation of both modules, including data preprocessing, model training, and evaluation, using Python libraries such as TensorFlow, Keras, and scikit- learn. The trained models are then integrated into a web application. This web application allows users to input their medical data and retinal images, and receive real- time predictions regarding their diabetic status and risk of diabetic retinopathy. The integration of these modules into a web application provides an intuitive interface tailored for both healthcare professionals and patients to assess diabetic risks conveniently. Furthermore, it facilitates early intervention and management of diabetic complications, ultimately improving patient outcomes and reducing healthcare burdens. [ABSTRACT FROM AUTHOR]
Copyright of i-Manager's Journal on Artificial Intelligence & Machine Learning (JAIM) is the property of i-manager Publications and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)