Treffer: Multibody Models Generated from Natural Language.

Title:
Multibody Models Generated from Natural Language.
Source:
Multibody System Dynamics; Oct2024, Vol. 62 Issue 2, p249-271, 23p
Database:
Complementary Index

Weitere Informationen

Computational models are conventionally created with input data, script files, programming interfaces, or graphical user interfaces. This paper explores the potential of expanding model generation, with a focus on multibody system dynamics. In particular, we investigate the ability of Large Language Model (LLM), to generate models from natural language. Our experimental findings indicate that LLM, some of them having been trained on our multibody code Exudyn, surpass the mere replication of existing code examples. The results demonstrate that LLM have a basic understanding of kinematics and dynamics, and that they can transfer this knowledge into a programming interface. Although our tests reveal that complex cases regularly result in programming or modeling errors, we found that LLM can successfully generate correct multibody simulation models from natural-language descriptions for simpler cases, often on the first attempt (zero-shot). After a basic introduction into the functionality of LLM, our Python code, and the test setups, we provide a summarized evaluation for a series of examples with increasing complexity. We start with a single mass oscillator, both in SciPy as well as in Exudyn, and include varied inputs and statistical analysis to highlight the robustness of our approach. Thereafter, systems with mass points, constraints, and rigid bodies are evaluated. In particular, we show that in-context learning can levitate basic knowledge of a multibody code into a zero-shot correct output. [ABSTRACT FROM AUTHOR]

Copyright of Multibody System Dynamics is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)