Treffer: Information Bottleneck Driven Deep Video Compression—IBOpenDVCW.

Title:
Information Bottleneck Driven Deep Video Compression—IBOpenDVCW.
Source:
Entropy; Oct2024, Vol. 26 Issue 10, p836, 12p
Database:
Complementary Index

Weitere Informationen

Video compression remains a challenging task despite significant advancements in end-to-end optimized deep networks for video coding. This study, inspired by information bottleneck (IB) theory, introduces a novel approach that combines IB theory with wavelet transform. We perform a comprehensive analysis of information and mutual information across various mother wavelets and decomposition levels. Additionally, we replace the conventional average pooling layers with a discrete wavelet transform creating more advanced pooling methods to investigate their effects on information and mutual information. Our results demonstrate that the proposed model and training technique outperform existing state-of-the-art video compression methods, delivering competitive rate-distortion performance compared to the AVC/H.264 and HEVC/H.265 codecs. [ABSTRACT FROM AUTHOR]

Copyright of Entropy is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)