Treffer: Analysis and Design of Wind Turbine Monitoring System Based on Edge Computing.

Title:
Analysis and Design of Wind Turbine Monitoring System Based on Edge Computing.
Source:
EAI Endorsed Transactions on the Energy Web; 2024, Vol. 11 Issue 1, p1-7, 7p
Database:
Complementary Index

Weitere Informationen

INTRODUCTION: A wind turbine data analysis method based on the combination of Hadoop and edge computing is proposed. OBJECTIVES: Solve the wind turbine health status monitoring system large data, time extension, energy consumption and other problems. METHODS: By analysing the technical requirements and business processes of the system, the overall framework of the system was designed and a deep reinforcement learning algorithm based on big data was proposed. RESULTS: It solves the problem of insufficient computing resources as well as energy consumption and latency problems occurring in the data analysis layer, solves the problems in WTG task offloading, and improves the computational offloading efficiency of the edge nodes to complete the collection, storage, and analysis of WTG data. CONCLUSION: The data analysis and experimental simulation platform is built through Python, and the results show that the application of Hadoop and the edge computing offloading strategy based on the DDPG algorithm to the system improves the system's quality of service and computational performance, and the method is applicable to the distributed storage and analysis of the device in the massive monitoring data. [ABSTRACT FROM AUTHOR]

Copyright of EAI Endorsed Transactions on the Energy Web is the property of EAI - European Alliance for Innovation n.o. and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)